The generator matrix

 1  0  1  1  1  1  1 2X^2+X  1  1  1 2X  1  1 2X^2+X  1  1  0  1  1  1  1  1 2X  1  1 X^2+2X  1  1  1 X^2+X  1  1  1  1  0  1  1  1 X^2  1  1  1  1 X^2  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 2X^2+X 2X^2  1 X^2+2X  1
 0  1 2X^2+2X+1  2 2X^2+X X+1 2X^2+X+2  1 2X 2X^2+1 2X+2  1 2X^2+2X+1 2X^2+X  1  2  0  1 2X X+1 2X^2+X+2 2X^2+1 2X+2  1 X^2 X^2+2X+1  1 X^2+2 X^2+X+1 X^2+X  1 2X^2+X+2 X^2+2X+2 2X 2X^2+1  1 X^2+1 X^2+X+2 X^2+2X  1 2X^2+1 X^2+1 2X 2X^2+X+2  1 X^2+2X X^2+X+2  1  0 X^2 2X^2+X X^2+2X  0 2X^2 X^2 2X^2+X X^2+X 2X^2+2X+1 X^2+2X+1 X+1 X^2+1 2X^2+2X+1 2X+1 X+1 X^2+2X+1 X^2+X+1 X^2+2X X^2+1  2  1  X 2X+2  1  0
 0  0 2X^2  0 2X^2 X^2 X^2  0  0 X^2 2X^2 2X^2  0 X^2 2X^2 2X^2 X^2 X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 X^2  0 X^2 2X^2  0 X^2  0 X^2  0  0 X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 X^2  0 X^2 2X^2 2X^2 2X^2  0 2X^2  0  0 2X^2  0 X^2 X^2 X^2 2X^2 2X^2 X^2 X^2 2X^2 2X^2 2X^2 X^2 X^2
 0  0  0 X^2 X^2 2X^2 X^2 X^2 X^2  0 2X^2  0  0 X^2 X^2 X^2  0 X^2  0 2X^2 2X^2 2X^2 2X^2  0  0  0  0 X^2 2X^2 X^2 X^2 2X^2 2X^2  0 2X^2  0  0 X^2 X^2 X^2  0 2X^2 X^2 X^2  0  0 2X^2 X^2 X^2 2X^2  0 2X^2 X^2 2X^2 X^2  0  0 2X^2 X^2  0 X^2 2X^2 X^2  0 2X^2  0 2X^2 X^2  0 2X^2 2X^2  0 2X^2 2X^2

generates a code of length 74 over Z3[X]/(X^3) who�s minimum homogenous weight is 142.

Homogenous weight enumerator: w(x)=1x^0+264x^142+216x^143+880x^144+630x^145+432x^146+750x^147+720x^148+486x^149+374x^150+528x^151+270x^152+604x^153+258x^154+54x^155+58x^156+18x^157+12x^163+4x^177+2x^183

The gray image is a linear code over GF(3) with n=666, k=8 and d=426.
This code was found by Heurico 1.16 in 0.287 seconds.